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Abstract
In video segmentation, generating temporally consistent

results across frames is as important as achieving frame-
wise accuracy. Existing methods rely either on optical flow
regularization or fine-tuning with test data to attain temporal
consistency. However, optical flow is not always avail-able
and reliable. Besides, it is expensive to compute. Fine-tuning
the original model in test time is cost sensitive.

This paper presents an efficient, intuitive, and unsuper-
vised online adaptation method, AuxAdapt, for improving
the temporal consistency of most neural network models. It
does not require optical flow and only takes one pass of the
video. Since inconsistency mainly arises from the model’s
uncertainty in its output, we propose an adaptation scheme
where the model learns from its own segmentation decisions
as it streams a video, which allows producing more confident
and temporally consistent labeling for similarly-looking pix-
els across frames. For stability and efficiency, we leverage
a small auxiliary segmentation network (AuxNet) to assist
with this adaptation. More specifically, AuxNet readjusts the
decision of the original segmentation network (Main-Net)
by adding its own estimations to that of MainNet. At every
frame, only AuxNet is updated via back-propagation while
keeping MainNet fixed. We extensively evaluate our test-time
adaptation approach on standard video benchmarks, includ-
ing Cityscapes, CamVid, and KITTI. The results demon-
strate that our approach provides label-wise accurate, tem-
porally consistent, and computationally efficient adaptation
(5+ folds overhead reduction comparing to state-of-the-art
test-time adaptation methods).

1. Introduction
Recent years have witnessed remarkable progress in

image-based semantic segmentation. With the rising popu-
larity and pervasiveness of videos, there is now an increasing
focus on video segmentation as a necessary functionality for
higher-level computer vision tasks. While it is possible to
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Figure 1: Segmentations of two pairs of consecutive video
frames. Columns 1 and 3 show the results of the state-of-the-
art HRNet-w48 model [40]. Columns 2 and 4 are obtained
by applying our efficient AuxAdapt to HRNet-48. As visible,
AuxAdapt improves the temporal consistency significantly.

treat video segmentation as an image segmentation problem
and apply image-based models to each frame independently,
such segmentations usually lack consistency in time. In other
words, image pixels across consecutive video frames that
belong to the same semantic class and share similar visual
appearances can be labeled differently, resulting in artifacts
such as flickering of segmentation. See examples in the 1st
and 3rd columns of Fig. 1.

There have been several attempts to bring temporal con-
sistency in video semantic segmentation. Most methods
utilize optical flow to impose consistency as it establishes
pixel correspondence across frames. For instance, [9, 11]
propose a joint training of segmentation and optical flow,
showing that the network can provide more consistent seg-
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mentation by learning both tasks together. Other methods
incorporate pretrained optical flow as an additional channel
of information to the network [31] for regularization during
training [27]. While optical flow is commonly employed,
there are drawbacks. First, inferring accurate optical flow
maps is challenging; thus, such a dependency limits the
performance of segmentation, often causing additional is-
sues. Moreover, existing joint optical flow and segmentation
methods need accurately annotated datasets. Besides, except
for [27], all these methods require the optical flow during
inference, which creates computational overheads.

Some previous approaches incorporate test-time model
adaptation to enhance temporal consistency [4, 24, 30, 42].
Nevertheless, most of these methods require dense corre-
spondence through motion estimation or patch matching [3].
A few works that do not use explicit optical flow computa-
tion, e.g., [12, 17], still depend on feature conformity across
multiple frames. In their pioneering work, Lei et al. [25]
have proposed Deep Video Prior (DVP), which can do away
with the optical flow computation by leveraging how a deep
neural network learns. Given a test video and the processed
frames, DVP trains a network from scratch to generate these
processed frames and employs early stopping to prevent the
network from overfitting to temporally-inconsistent patterns.
While DVP can provide adaptation, it demands training the
original network model for more than 20 epochs on each test
video, resulting in a drastic computational cost.

Our paper proposes an efficient unsupervised online (test-
time) adaptation method to promote temporal consistency of
video semantic segmentation. Our approach applies to any
existing segmentation models. On a high level, we enable the
network to efficiently learn from its own decisions without
a dependency on optical flow or other temporal features
either in training or test. The network adapts based on the
(hard) labeling decisions it makes for the pixels of the current
frame while it sequentially segments video frames. Our
observation is that consecutive frames share similar visual
content; therefore, by reinforcing the network to bolster on
its previous responses, it is possible to obtain consistent
responses for similar regions in future frames. Our intuition
here is that we do not need to update the entire network to
accomplish such a reinforcement. Instead, we incorporate
a tiny auxiliary network (AuxNet) to steer and assist with
the adaptation, as illustrated in Fig. 2 (right). We refer to our
method as AuxAdapt.

Since this AuxNet can be easily trained with only one
backward pass in back-propagation on a single frame, our
method is very efficient. In comparison, existing adaptation
methods such as DVP require training on a large set of
frames for significantly more epochs. AuxNet retains a small
architecture and works in lower spatial resolution and lower
frame rate. It is trained for the same semantic segmentation
task as the main segmentation network (MainNet), to which

it provides test-time adaptation. During inference for each
frame, MainNet is frozen, and only AuxNet is updated as
the integrated model streams through the video. The final
segmentation is determined by the “aggregated" outputs of
MainNet and AuxNet. In this way, the segmentation model
adapts continuously to a given video with only a fraction
of the computational cost of DVP since only AuxNet gets
updated instead of the entire MainNet.

Furthermore, our proposed AuxAdapt maintains the seg-
mentation accuracy while improving temporal consistency
online. As MainNet is kept intact and contributes to the
aggregated output, we prevent catastrophic forgetting and
limit the variation of accuracy. Although AuxNet employs
a smaller architecture and usually does not provide as high
of a standalone accuracy as MainNet, training on the aggre-
gated outputs allows it to distill knowledge from MainNet
during the adaptation. As we shall see in the experiments,
even when AuxNet’s accuracy is a few percentage points
lower than that of MainNet (in terms of mIoU), the overall
segmentation accuracy is maintained. In some cases, the
overall accuracy even improves slightly due to the ensemble
effect of the two networks. In contrast, the state-of-the-art
DVP trains a new network for a specific test video, and their
model does not provide accurate segmentation for other test
data without expensive retraining. Moreover, DVP relies on
early stopping to a trade-off between temporal consistency
and accuracy on the test video, but does not provide a clear
criterion for early stopping in test time.

We summarize our main contributions as follows:
• We present an unsupervised online adaptation method,

AuxAdapt, to boost temporal consistency of video se-
mantic segmentation. Our approach does not require
optical flow (or cross-frame features). It can be ap-
pended to any segmentation network.

• We introduce a novel tiny auxiliary network (AuxNet)
that accompanies the selected main segmentation net-
work (MainNet). The final segmentation is obtained
by fusing these two networks’ outputs. Only AuxNet
is updated at each frame with only one epoch during
test time, which significantly reduces the computational
load. AuxNet can take advantage of temporal and spa-
tial sub-sampling for further acceleration.

• We leverage on a simple change-detection-based adap-
tive momentum when performing the online adaptation,
which adjusts the momentum coefficient based on the
difference of two consecutive frames. We show that this
provides a good balance between temporal consistency
and segmentation accuracy.

• We conduct extensive experiments on Cityscapes,
Camvid, and KITTI with comprehensive ablation stud-
ies that demonstrate the efficacy of our approach. Over-
all, AuxAdapt consistently improves the temporal con-
sistency of state-of-the-art models by several percent-



Figure 2: Left: Deep Video Prior (DVP) [25] first applies the original network to all video frames. The outputs, together with
the corresponding inputs, are collected to form a training set. A new network is then trained based on this set using at least 25
epochs. Finally, the retrained network is applied to the same video to obtain the final outputs. This means DVP applies twice
inference over the entire set of frames and a full-scale, computationally expensive retraining. Middle: NaiveAdapt: the main
segmentation network is being updated when processing through the video frames. Right: AuxAdapt uses a tiny auxiliary
network on lower spatial resolution together with the main segmentation network. It only updates AuxNet. This has several
advantages (see Introduction). Note that AuxNet estimates are fused with MainNet before cross-entropy loss with softmax
(CE) [1]. Logits is a H ×W ×K tensor.

age points while maintaining segmentation accuracy.
Notably, this is achieved with a tiny fraction of the com-
putation cost required by existing methods (e.g., <2%
of what DVP incurs).

2. Related Work
Video Semantic Segmentation: Since the introduction of
fully convolutional networks (FCNs) [28], various network
architectures have been developed to improve the segmenta-
tion accuracy as well as efficiency, e.g., U-Net [34], PSPNet
[43], DeepLab [7], and HRNet [40], to count a few. Ap-
plying an image-based semantic segmentation network for
videos in a per-frame fashion is a common choice in practice
due to its simplicity. Although recent state-of-the-art seg-
mentation networks (e.g., HRNet) can achieve impressive
results on individual images, they often induce temporally
inconsistent results when applied to video frames [27].
Temporal Consistency: There are numerous studies on im-
proving the temporal consistency of video processing tasks
such as colorization, dehazing, and segmentation [24, 25, 30].
More related to our paper are those that study temporal con-
sistency of video semantic segmentation. In the existing
literature, researchers have proposed incorporating differ-
ent information during training to improve segmentation
temporal consistency, e.g., optical flow [19, 31], 3D struc-
ture [13, 22], and/or utilizing more complex models, e.g.,
Recurrent Neural Network (RNN) [33, 36], Conditional Ran-
dom Field (CRF) [23], non-local attention [17]. However,
these methods either require accurate pixel-correspondence

across frames, which is not always available or reliable, or
utilize more complicated models (e.g., attention), which in-
troduce significant computational overhead. Recently, Liu
et al. [27] have proposed incorporating optical flow only
during training and utilizing distillation to derive smaller
networks, making inference more efficient. However, their
method still requires video data for training and is con-
strained by the estimated optical flow’s reliability. Some
other works exploit the temporal nature of videos to im-
prove accuracy [14, 26, 32, 39, 6, 18] and not for improving
consistency.
Test-Time Adaptation: Past studies have also looked at test-
time model updates, e.g., Tent [38] for domain adaptation.
Online adaptation could be another route for improving tem-
poral consistency. Some works utilize optical flow during the
test for adaptation, which requires multi-frame processing
and considerable computations [4, 30, 42]. Recently, Lei et
al. [25] proposed DVP for single-video test-time adaptation,
which has been shown to work well for low-level vision
tasks, e.g., colorization. However, DVP requires significant
model update effort during test time. Some other works as-
sume that the ground-truth annotations are available for the
first frame and consider the adaptation as a few-shot learning
problem [29, 37, 41], which is a different setup than what
we analyze in our paper.

3. Proposed Method
When a semantic segmentation network is uncertain about

its estimates (i.e., the top two classes having numerically



similar responses), small input variations could result in con-
trasting segmentation decisions due to the hard-decision rule
(i.e., argmax) applied at the end of the network. An example
of this issue can be seen in Fig. 1 (1st and 3rd columns),
where similar road pixels are assigned to different labels
across time. Such output uncertainty constitutes a major
cause of temporal inconsistency in video segmentation.

This section describes the proposed AuxAdapt method
that improves temporal consistency by enabling the network
to learn from its own hard decisions. Note that soft decisions
do not generate a loss and thus are not useful in an unsuper-
vised setting. Online adaptation encourages the network to
be more confident in its outputs, leading to a more consistent
semantic segmentation across frames.

AuxAdapt employs an auxiliary network (AuxNet) to aid
the adaptation. AuxNet is tiny; thus, it has a small computa-
tion overhead. Not updating the given main network (Main-
Net) improves the overall stability and prevents catastrophic
forgetting. It also helps to maintain accuracy. Adapting only
the AuxNet branch makes the process more flexible, allow-
ing it to apply most segmentation architectures. In addition,
AuxNet can utilize intermittent (conditional) updates and
spatial sampling to reduce computations further. We also
bring in an adaptive momentum scheme to decide how much
of the previous information to use for adaptation, based on
the difference between two consecutive frames.

3.1. Learning from Network’s Own Decisions
Consider a pretrained semantic segmentation network

fmain, which takes as input an RGB image, x ∈
[0, 1]H×W×3, and generates a response/prediction map,
ymain ∈ RH×W×K , for a K-class semantic segmentation
task, where H and W are the height and width of the input
image, respectively. Given a spatial location (i, j) in the
image, ymain(i, j, k) is a score that indicates how likely this
pixel belongs to class k. For the segmentation decision, an
argmax operation is applied pixel-wise to the last dimen-
sion of ymain, such that the most probable class is assigned
to each pixel. We denote this hard (discrete) decision as
yseg ∈ {1, 2, . . . ,K}H×W . To obtain semantic segmenta-
tion for a sequence of video frames X = {x1, . . . , xT },
fmain can be applied to generate Y = {yseg

1 , . . . , yseg
T },

where T is the number of frames in the video.
While applying fmain to X can generate video semantic

segmentation, the resulting output Y is usually temporally
inconsistent, as shown in Fig. 1 (1st and 3rd columns). This
is mainly due to the network’s uncertainty in its own output,
as aforementioned. To improve the temporal consistency,
it is necessary to reduce the network’s uncertainty. We ad-
dress this by training the network on its own hard decisions,
which reinforces its own belief. This allows the network to
generate more confident predictions for image regions that
are visually similar to what it has seen before. Our method

Algorithm 1: AuxAdapt
Input: x1, x2, . . . , xT ;
Output: yseg

1 , yseg
2 , . . . , yseg

T ;
Load trained MainNet fmain, which will be frozen;
Load trained AuxNet f aux as f aux

1 ;
Initialize t = 1;
while t ≤ T do
ymain
t = fmain(xt),2 yaux

t = f aux
t (xt);

yseg
t (i, j)=argmax

k

ymain
t (i, j, k)+yaux

t (i, j, k),∀(i, j);

Compute loss: L(yaux
t , yseg

t ) using Eq. (2);
Update f aux

t using Eq. (1), which gives f aux
t+1;

t← t+ 1;
end

works in a one-pass fashion, only requiring the network to go
through the video once. The adaptation based on the current
frame will immediately lead to more temporally consistent
segmentation on the next frame, as consecutive frames share
similar visual content. Note that existing test-time adaptation
methods, e.g., DVP [25], Tent [38], do not take advantage of
the sequential property (i.e., consecutive frames are visually
similar) and need to re-apply the updated network to the full
video again. DVP also requires training at least 25 epochs
for adapting to a video.

One possible, straightforward way to implement such an
adaptation scheme is to compute the loss between ymain

t and
yseg
t and update the network on this loss, at each time t. We

refer to this adaptation scheme as NaiveAdapt, which is
illustrated in Fig. 2 (middle). This NaiveAdapt approach,
however, has some drawbacks. First, performing backward
pass on the entire network is computationally expensive.1

Also, adapting the segmentation network for a long video
can degrade its general segmentation accuracy. Moreover,
updating the network can be tricky for architectures that re-
quire information from previous frames, such as TDNet [17]
and those with recurrent modules.

3.2. Adaptation Using Auxiliary Network
In order to overcome the disadvantages of NaiveAdapt,

we propose AuxAdapt, which employs a separate auxiliary
network (AuxNet), f aux, to work with the main segmenta-
tion network (MainNet), fmain, during the adaptation process.
AuxNet is a separately-trained small-sized segmentation net-
work. When streaming the video, at each time t, MainNet
and AuxNet produce their respective prediction maps for
the current frame, ymain

t and yaux
t . An argmax operation is

1An alternative is to update the last layer(s) of the network, however, this
does not provide meaningful improvements, as we shall see in the experi-
ments in Sec. 4.3.

2While our algorithm description assumes that MainNet operates on each
individual frame, AuxAdapt is compatible with those that utilize informa-
tion from multiple frames (e.g., [17]): ymain

t = fmain(xt, xt−1, ..., x1),
as we shall see in Sec. 4.3.



Figure 3: Adaptation dynamics of AuxAdapt on a CamVid test
video. AuxAdapt improves temporal consistency (left) and main-
tains overall accuracy (right) in online adaptation.

then applied to the summation of these two maps to obtain
the discrete semantic segmentation decision, yseg

t . Unlike
NaiveAdapt, in AuxAdapt, only the AuxNet is updated based
on yseg

t while MainNet is kept frozen. AuxNet is updated
using gradient descent as follows:

∆θaux
t = β∆θaux

t−1 + α∇θauxL(yaux
t , yseg

t ),

θaux
t = θaux

t−1 + ∆θaux
t ,

(1)

where θaux denotes the parameters of AuxNet, α is the learn-
ing rate, β is a momentum coefficient that controls the con-
tribution of past gradients. L is the loss function:

L(yaux
t , yseg

t ) =

H∑
i=1

W∑
j=1

LCE(yaux
t (i, j), yseg

t (i, j))

HW
, (2)

where LCE is the cross-entropy loss (with softmax) [1].
Since the updates are performed as the network consumes

each frame of the video, the batch size is 1. As such, the
mean and standard deviation of batch normalization layers
are fixed during this process.

During this process, although MainNet is frozen, the adap-
tation is enabled by combining the output of the adaptable
AuxNet and the output of the MainNet to generate the fi-
nal discrete segmentation decision for each frame. Then,
AuxNet learns from the discrete final decision to reduce
the uncertainty in the overall prediction. Our AuxAdapt
algorithm is summarized in Algorithm 1.

AuxAdapt offers several advantages. Efficiency-wise, by
adopting a small AuxNet, the computation of its forward and
backward passes will be much smaller than that of updating
the entire MainNet. In addition, we can easily apply Aux-
Adapt to any semantic segmentation network, as we only
need to run forward pass on MainNet and avoid involving
the possibly intricate training procedures of MainNet.

Furthermore, AuxAdapt can maintain the segmentation
accuracy both on the given test video and on other general
test images, thanks to our integrated MainNet-AuxNet model
during the adaptation. More specifically, as MainNet is un-
changed, we fundamentally prevent catastrophic forgetting.
In contrast, updating MainNet itself (i.e., NaiveAdapt) can
degrade segmentation accuracy, as we shall see in Sec. 4.3.
In addition, combining MainNet’s and AuxNet’s outputs for
the overall segmentation has a number of benefits. First,

the variation of accuracy is limited due to MainNet’s contri-
bution to the overall output. Learning from the aggregated
decisions allows AuxNet to distill knowledge from MainNet,
which encourages AuxNet to match MainNet’s performance.
Lastly, the ensemble effect of the two networks also helps
maintain (sometimes even improve) the segmentation accu-
racy.

Figure 3 shows the adaptation dynamics for a sample test
video. Fig. 3 (left) shows that AuxAdapt (red) considerably
improves the temporal consistency of the original MainNet
(blue) while streaming the video. During this process, it can
be seen in Fig. 3 (right) that AuxAdapt (red) closely matches
the accuracy of the original MainNet (blue). With AuxAdapt,
AuxNet improves its accuracy by learning from MainNet
during the process (black) as compared to the non-adapted
AuxNet (purple).

Remark 1. While it is desirable for AuxNet to be very effi-
cient, AuxNet should still provide a reasonable standalone
segmentation accuracy. This can be achieved by utilizing a
state-of-the-art efficient model, e.g., HRNet-w18 [40]. We
note that it is not necessary for AuxNet to be as accurate
as MainNet. In our experiments, we test various MainNet-
AuxNet combinations where the AuxNet is usually a few
percentage points less accurate than MainNet, but AuxAdapt
is able to maintain the overall segmentation accuracy.

3.3. Reducing Computation Further
In addition to utilizing an AuxNet, it is possible to further

improve the efficiency of the adaptation process, by exploit-
ing the redundancies in the temporal and spatial domains.
Intermittent Adaptation: The consecutive frames in a
video are usually highly similar, especially for a video with
a large frame rate. As such, we do not need to update the
network for every single frame and can instead perform the
model update every several frames. As we shall show in our
experiments, performing such intermittent adaptation further
reduces computation while still providing a considerable
improvement on temporal consistency.
Confidence-Based Spatial Sampling: When the network
is already highly confident in its prediction on a pixel, the
loss (i.e., LCE for pixel (i, j)) for this spatial location will
be very small. Such loss terms will not provide meaningful
contributions to updating the model and will instead incur
unnecessary computation. As such, we can remove such
redundant spatial locations from the overall loss computation
by setting a confidence threshold. For each pixel, when
the combined segmentation confidence (the highest softmax
score among the K classes) is above the given threshold, the
corresponding loss will not be included in the model update.

3.4. Motion-Based Adaptive Momentum
How the network adapts should also depend on how fast

the video scene evolves. For instance, given a slowly-moving



scene, earlier frames can still be relevant and visually similar
to the current frames. On the other hand, for a fast-changing
scene, older frames can quickly become irrelevant. Mo-
mentum provides a mechanism for the network to control
how much it should utilize previous information via the dis-
counted gradients associated with earlier frames. A larger
momentum (i.e., a larger β in Eq. (1)) allows the network to
retain more past information and thus can benefit temporal
consistency. This, however, might reduce segmentation accu-
racy as the network’s update is mixed with the decisions on
the earlier, less related frames. On the other hand, a smaller
momentum makes the network focus more on the current
frame and better preserves the original segmentation accu-
racy but provides less temporal consistency improvement.
To achieve a good balance, we propose using a motion-based
adaptive scheme for the momentum coefficient. More specif-
ically, we set β = 1 − 1

HW ‖xt − xt−1‖1, where ‖ · ‖1
denotes L1 norm. This sets the strength of the momentum
conditioned on how fast the frames change.

4. Experiments
In this section (and also in Supplementary File), we

present a comprehensive performance analysis on large
benchmark datasets, compare with baselines and the current
state of the art, assess the cross-dataset adaptation ability
of our method, and evaluate our method under intermittent
adaptation and spatial sampling, as well as our adaptive
momentum scheme. Finally, we conduct in-depth ablation
studies on various aspects of our method.

4.1. Experiment Setup
Datasets: We run extensive performance evaluations of
our method on Cityscapes (CS) [10], Camvid [5], and
KITTI [15]. For CS, we use the validation set of 500 videos,
each with 30 frames of size 1024×2048. For CamVid, we
use the test set, which contains two long video sequences
with a frame size of 720×960. To ensure a fair comparison
with the latest video semantic segmentation method [27], we
use their setup for evaluating temporal consistency.

We use KITTI for cross-dataset adaptation experiments,
i.e., the networks trained on CS are used for test-time adap-
tation on KITTI. To accommodate the class number and
class label assignment difference between CS and KITTI,
we map the 7 overlapping classes from KITTI to CS and
treat all the other classes from both datasets as a separate
class named “others". We utilize raw KITTI data for the
test-time adaptation task, containing 60 videos, capped at
100 frames each. The frame size is 384×1280. For evaluat-
ing segmentation accuracy, we use the 200 images that have
ground-truth annotations, which are sampled across videos.
Networks: We use several state-of-the-art models as the
main segmentation network (MainNet), including HR-
Net [40], DeepLabV3+ [8] with a ResNet-101 back-

Test Set MainNet AuxNet
CS, KITTI HRNet-w48-s4 [40] HRNet-w18-s8

CS HRNet-w18-s4 [40] HRNet-w16-s8
CS DeepLabV3+ [8] (RN-101) HRNet-w18-s8
CS ETC [27] (PSP-18) HRNet-w18-s8
CS TD4 [17] (PSP-18) HRNet-w16-s8

CamVid HRNet-w18-s4 [40] HRNet-w16-s8
CamVid PSPNet-101 [43] HRNet-w18-s8
CamVid WideResNet-38 [45] HRNet-w18-s8

Table 1: MainNet-AuxNet combinations used in our main results
shown in Tables 2, 3, and 4.

bone [16], ETC [27] with a PSPNet-18 backbone [43], and
TDNet [17] with a PSPNet-18 backbone. For HRNet, we use
two versions: HRNet-w48-s4 and HRNet-w18-s4.3 As for
AuxNet, we use HRNet-w18-s8 and HRNet-w16-s8, which
are light-weight models. The MainNet-AuxNet combina-
tions are summarized in Table 1.4

Hyperparameters: We use a learning rate of 0.0001 for all
our experiments, a typical value for model fine-tuning.

4.2. Evaluation Metrics
To evaluate segmentation accuracy, we use the standard

mean Intersection-over-Union (mIoU). For temporal consis-
tency (TC) evaluations, we use FlowNet2 [20] to compute
optical flow between two adjacent frames and warp the seg-
mentation at frame t to frame t − 1. We then compare the
warped and actual segmentations for each frame (t < T )
using mIoU. The overall mIoU then serves as the TC metric.
Note that this is the same TC metric used in [27]. We eval-
uate the computation efficiency of a method based on the
MAC count in the forward and backward passes per frame.
Notice, the backward pass costs twice as many MACs as the
forward pass [2].

4.3. Results
We compare our proposed approach with various state-of-

the-art (SOTA) methods, including 1) non-adaptive methods
that train and test on single frames [8, 21, 35, 40, 43, 44, 45],
2) non-adaptive methods that utilize multi-frame informa-
tion (e.g., optical flow, temporal attention) [17, 27], and 3)
adaptation methods [25, 38], as well as baseline adaptation
methods that update MainNet without using AuxNet. Finally,
we present results using our proposed motion-based adaptive
momentum.
Evaluation on Cityscapes & Camvid: On Cityscapes, as
summarized in Table 2, AuxAdapt significantly improves

3The number following “w" indicates the channel multiplier and the number
following “s" indicates the up-sampling ratio towards the output.

4When no trained AuxNets are available, we can create an AuxNet using
a low-resolution copy of MainNet. This provides temporal consistency
improvement comparable to that of a separately-trained AuxNet, but can
incur slightly more computation as its architecture is dictated by MainNet.
Detailed results can be found in the Supplementary File.



Method TC mIoU GMAC/F
CC [35] 71.2 67.7 -
DFF [44] 71.4 68.7 -
Accel [21] 70.3 72.1 -

HRNet-w18-s8 [40] 71.9 72.6 19
ETC [27] (PSP-101) 71.7 79.5 1731
HRNet-w48-s4 [40] 72.1 81.0 750

w/ DVP [25] 77.4 59.0 56924
w/ Tent [38] 29.8 62.4 3000

w/ AuxAdapt (ours) 75.8 81.0 808
HRNet-w18-s4 [40] 70.5 76.2 78

w/ DVP [25] 76.9 73.6 5898
w/ Tent [38] 55.3 61.3 310

w/ AuxAdapt (ours) 75.3 76.6 128
DeepLabV3+ [8] 71.0 76.2 633

w/ DVP [25] 72.2 76.2 48108
w/ Tent [38] 25.2 59.7 2532

w/ AuxAdapt (ours) 75.1 76.6 691
ETC [27] (PSP-18) 70.6 73.1 463

w/ DVP [25] 76.2 71.5 35188
w/ Tent [38] 57.1 58.6 1852

w/ AuxAdapt (ours) 76.2 75.1 514
TD4 [17] (PSP-18) 71.6 76.8 239

w/ AuxAdapt (ours) 74.5 77.1 290

Table 2: Performance evaluation on Cityscapes validation
set.

the temporal consistency of the state-of-the-art models while
preserving (and in some cases, improving) the segmentation
accuracy. For instance, for MainNet of HRNet-w48-s4, Aux-
Adapt improves the TC from 72.1 to 75.8, requiring only
7% additional computation. Furthermore, our approach can
also improve models that have already utilized multi-frame
information, e.g., ETC [27] that utilizes optical flow during
training, TDNet [17] that uses temporal attention, as shown
in the last two blocks of Table 2.

We see that the SOTA test-time adaptation methods do not
provide reliable performance and cost much more computa-
tion. For instance, DVP [25] incurs an unfavorable trade-off
between temporal consistency and accuracy. It trains, from
scratch, a new network to mimic the original network and
requires early stopping to prevent overfitting to temporally
inconsistent patterns. However, stopping too early leads to a
large performance gap between the original and new models.
As such, when DVP delivers a TC similar to ours, it consid-
erably reduces segmentation accuracy, and when it attains
the original accuracy, its TC improvement is minimal. More-
over, as DVP requires training a new network for 25 epochs
(default setting), its computation is prohibitively high for test
time (46–70× higher than AuxAdapt). As for Tent [38], it
significantly degrades both TC and accuracy. Tent uses en-
tropy minimization to update the batch normalization (BN)
layers of the original network, which severely limits the
adaptation capability. Furthermore, to update the BN layers,

Method TC mIoU GMAC/F
DFF [44] 78.0 66.0 –

Accel [21] 76.2 66.7 –
HRNet-w18-s4 [40] 75.8 73.2 26

w/ DVP [25] 56.6 71.4 1946
w/ Tent [38] 59.1 29.2 102

w/ AuxAdapt (ours) 79.1 73.2 42
PSPNet-101 [43] 76.7 76.2 691

w/ DVP [25] 51.3 72.5 52546
w/ Tent [38] 20.6 28.3 2765

w/ AuxAdapt (ours) 79.5 76.4 711
WideResNet-38 [45] 78.1 80.6 1920
w/ AuxAdapt (ours) 79.4 80.8 1995

Table 3: Performance evaluation on Camvid test set.

Method TC mIoU GMAC/F
HRNet-w48-s4 [40] 57.4 65.9 176

DVP [25] 64.1 27.2 13361
w/ AuxAdapt (ours) 63.5 65.8 189

Table 4: Cross-dataset adaptation from Cityscapes to KITTI.

it is required to propagate through the entire network.
On CamVid, as shown in Table 3, AuxAdapt consistently

improves temporal consistency and maintains the segmen-
tation accuracy for a longer test video. In contrast, DVP
degrades in both TC and accuracy, as the default 25 epochs
are not sufficient for the larger test data, and there is no
guideline on how to increase the training time w.r.t. the
video length properly. Similarly, Tent does not perform
well as the much longer test video makes it challenging for
training. Note that CamVid videos are much longer (6000+
frames).
Cross-Dataset Adaptation: In practice, the test data can
have different characteristics than the training data, e.g.,
scenes and camera settings. Here, we evaluate AuxAdapt for
such a scenario by adapting a Cityscapes-trained model to
KITTI data. Note that the segmentation accuracy is evaluated
on KITTI based on the 200 images (from different videos!)
with ground-truth annotations. Such an evaluation will assess
whether the adapted model maintains a general segmentation
capability beyond the one specific test video.

The results are summarized in Table 4. First, it can be
seen that the performance of MainNet (without adaptation)
drops considerably as compared to that on Cityscapes, due to
the difference between KITTI and Cityscapes. By applying
AuxAdapt, the TC significantly improves from 57.4 to 63.5.
We also compare with DVP. While DVP improves temporal
consistency, it incurs significantly heavier computation, and
the obtained model obtained cannot provide acceptable seg-
mentation accuracy on images outside the given test video.
In other words, the DVP-trained model cannot be applied to
a new test video without incurring another expensive training



Method TC mIoU GMAC/F
Cityscapes

HRNet-w48-s4 72.1 81.0 750
w/ NaiveAdapt (Last Part) 72.3 80.5 889

w/ NaiveAdapt (All Layers) 76.2 80.9 2249
+ AuxNet (HRNet-w18-s8) 73.3 80.9 768

w/ AuxAdapt (ours) 75.8 81.0 808
HRNet-w18-s4 70.5 76.2 78

w/ NaiveAdapt (Last Part) 70.7 76.2 109
w/ NaiveAdapt (All Layers) 74.1 76.6 233
+ AuxNet (HRNet-w16-s8) 72.9 76.5 95

w/ AuxAdapt (ours) 75.3 76.6 128
KITTI

HRNet-w48-s4 57.4 65.9 176
w/ NaiveAdapt (Last Part) 57.3 65.7 208

w/ NaiveAdapt (All Layers) 62.3 62.5 527
+ AuxNet (HRNet-w18-s8) 58.8 65.2 180

w/ AuxAdapt (ours) 63.5 65.8 189

Table 5: Comparison with baseline adaptation schemes,
including two options of NaiveAdapt which updates the
last part and all layers of MainNet, respectively (without
AuxNet). We also report the performance of the integrated
MainNet-AuxNet model, without model update (4th row of
each block).

session. On the other hand, AuxAdapt can readily provide
accurate segmentation on new test data, without the need of
further adapting.
Comparing with Baseline Adaptation Schemes: We com-
pare AuxAdapt with the NaiveAdapt baseline on Cityscapes
and KITTI. For NaiveAdapt, we consider two options: 1)
updating only the last part,5 and 2) updating all the layers of
MainNet. As shown in Table 5, only updating the last part of
MainNet does not result in meaningful TC gain, while updat-
ing the entire MainNet produces less or similar TC gain but
incurs much higher computation. Note that for cross-dataset
adaptation on KITTI, updating the entire MainNet consid-
erably reduces accuracy due to overfitting to the given test
video. As for the case of adding MainNet’s and AuxNet’s
outputs without adaptation, TC increases slightly but is con-
siderably lower than AuxAdapt, indicating that adaptation is
key to improving TC.
Intermittent Adaptation: As shown in Table 6, under in-
termittent adaptation, AuxAdapt still considerably improves
TC and maintains the original accuracy, using even lower
computation. Note that on KITTI, as the update happens less
frequently, TC improvement drops slightly faster as com-
pared to on Cityscapes. This is because the networks are
more uncertain on KITTI as they are trained on Cityscapes
and the scenes in KITTI evolve more quickly. In spite of
these challenging factors, AuxAdapt is still able to consider-
ably improve TC with intermittent adaptation.

5The last part of HRNet consists of two conv. layers and a BN layer.

Update Frequency TC mIoU GMAC/F
Cityscapes

No Adaptation 72.1 81.0 750
Every Frame 75.8 81.0 808

Every 2 Frames 75.4 81.0 789
Every 5 Frames 74.8 81.0 777

Every 10 Frames 74.7 80.9 773
KITTI

No Adaptation 57.4 65.9 176
Every Frame 63.5 65.8 189

Every 2 Frames 62.3 66.2 185
Every 5 Frames 60.6 66.3 182

Every 10 Frames 59.9 66.1 181

Table 6: Intermittent Adaptation. MainNet is HRNet-w48-s4 and
AuxNet is HRNet-w18-s8.

Selection Cityscapes KITTI
Criterion TC mIoU % TC mIoU %

None 72.1 81.0 0 57.4 65.9 0
All 75.8 81.0 100 63.5 65.8 100

Conf.<0.9 76.6 81.0 15.0 63.8 64.1 18.0
Conf.<0.8 76.5 81.0 11.4 64.0 63.8 13.9

Table 7: Confidence-based spatial sampling. MainNet is HRNet-
w48-s4 and AuxNet is HRNet-w18-s8. The 3rd column of each
dataset block shows the average percentage of pixel locations in-
cluded in the model updates. Note that “None" is MainNet only
(without adaptation) and “All" is AuxAdapt without sub-sampling.

Figure 4: TC and mIoU by using our motion-adaptive mo-
mentum coefficient, as compared to fixed momentum coeffi-
cients.

Confidence-Based Spatial Sampling: As shown in Table 7,
by using confidence-based sampling, we significantly reduce
the number of pixel locations included in the loss compu-
tation, which further enhances efficiency. Meanwhile, we
achieve similar TC improvements. On KITTI, we notice
a minor drop in mIoU when applying the spatial sampling.
This is because the Cityscapes-trained networks are more
uncertain on KITTI and excluding the confident pixels can
limit AuxNet’s learning from MainNet.

Motion-Based Adaptive Momentum: In Figure 4, we
show that our motion-adaptive momentum automatically
finds a good balance between TC and accuracy across
datasets, as compared to using a fixed momentum.



5. Conclusions
In this paper, we proposed a novel, unsupervised online

adaptation method, AuxAdapt, for improving temporal con-
sistency of video semantic segmentation in test time. Aux-
Adapt does not require optical flow (or cross-frame features)
and can be applied to any segmentation network. By em-
ploying a small auxiliary network to work with the original
segmentation network, AuxAdapt considerably boosts the
temporal consistency of state-of-the-art segmentation mod-
els while using a tiny fraction of the computation required
by existing adaptation methods. Furthermore, AuxAdapt
exploits temporal and spatial sub-sampling for further accel-
eration, and utilizes an adaptive scheme to automatically set
the momentum for adaptation.
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6. Supplementary Materials

6.1. Per-Class Temporal Consistency

As shown in Table 8, AuxAdapt provides consistent TC
improvement across classes.

Method road sdwk. bldg. wall fence pole t-light t-sign veg. terrain
No Adapt 96.5 82.8 87.6 53.6 66.3 30.2 57.8 58.5 88.9 76.5
AuxAdapt 97.3 85.4 89.8 65.2 75.8 30.2 60.2 61.4 90.5 81.2

Method sky person rider car truck bus train m-bike bike mean
No Adapt 91.9 60.6 58.7 85.7 81.1 85.9 83.0 56.1 68.1 72.1
AuxAdapt 92.6 62.7 62.0 87.5 85.7 90.4 86.7 65.1 71.3 75.8

Table 8: Per-class temporal consistency on Cityscapes. Main-
Net: HRNet-w48-s4. AuxNet: HRNet-w18-s8.

6.2. When Pretrained AuxNet is Unavailable

During test time, there can be cases where only the main
segmentation network (MainNet) is provided and no pre-
trained auxiliary networks (AuxNets) are available. In such
cases, it is still possible to apply AuxAdapt to improve tem-
poral consistency, by creating a lower-resolution copy of
MainNet to serve as AuxNet. More specifically, we create
a copy of MainNet and add a down-sampling layer at the
beginning of it. In this way, AuxNet shares the same architec-
ture and weights as MainNet, but works with down-sampled
inputs, thus considerably saving computation. At the end of
AuxNet, a corresponding up-sampling layer is added such
that the size of its output matches that of MainNet.

In Table 9, it can be seen that in this setting where AuxNet
is obtained from MainNet (denoted as “OFM"), AuxAdapt
provides considerable improvement to temporal consistency
while maintaining segmentation accuracy. As compared to
the case where a pretrained AuxNet is available (denoted as
“PT"), AuxAdapt in the OFM setting provides very similar
performance. Overall, the OFM option makes AuxAdapt
more widely applicable while providing comparable adap-
tation performance. Note that, in this OFM setup, the addi-
tional computational cost for test-time adaptation could be
higher than using a well-designed and pretrained AuxNet
since now AuxNet is directly derived from MainNet, and is
not optimized for its efficiency.

6.3. Input Down-sampling for AuxNet

In the main paper, 2× down-sampling is applied to
AuxNet’s input (see Fig. 2 of main paper), which reduces
computation. In this part, we study the effect of further
down-sampling the input to AuxNet.

Table 10 shows the results with a more aggressive down-
sampling ratio (3×). It can be seen that the TC improvement
is similar and the computation cost is reduced. However, the
segmentation accuracy slightly drops, as the further-down-
sampled input now contains less information.

Method TC mIoU GMAC/F
Cityscapes

HRNet-w18-s4 [40] 70.5 76.2 78
w/ AuxAdapt (PT) 75.3 76.6 128

w/ AuxAdapt (OFM) 75.2 76.4 136
CamVid

HRNet-w18-s4 [40] 75.8 73.2 26
w/ AuxAdapt (PT) 79.1 73.2 42

w/ AuxAdapt (OFM) 78.9 73.2 45
WRN38 [45] 78.1 80.6 1920

w/ AuxAdapt (PT) 79.4 80.8 1995
w/ AuxAdapt (OFM) 79.7 80.7 2280

Table 9: AuxAdapt using MainNet-derived AuxNet on Cityscapes
and CamVid. OFM indicates that AuxNet is obtained from Main-
Net, with an additional down-sampling operation at the beginning.
PT denotes the setting where AuxNet is pretrained using the corre-
sponding architectures described in Table 1 of the main paper.

Method TC mIoU GMAC/F
Cityscapes

HRNet-w48-s4 [40] 72.1 81.0 749.9
w/ AuxAdapt (2× ↓) 75.8 81.0 808.2
w/ AuxAdapt (3× ↓) 76.7 80.5 776.2

KITTI
HRNet-w48-s4 [40] 57.4 65.9 175.8
AuxAdapt (2× ↓) 63.5 65.8 189.4
AuxAdapt (3× ↓) 63.4 64.0 181.9

Table 10: Effect of AuxNet’s input resolution. The numbers
in the parentheses indicate how much the input image is down-
sampled via average pooling. MainNet is HRNet-w48-s4. For 2×
(3×) down-sampling, AuxNet is HRNet-w18-s8 (HRNet-w18-s12),
where the number following “s" indicates the upsampling ratio at
the output.

6.4. Standalone Performance of AuxNet

In Table 11, we report the standalone performance of
the lightweight models which are used as AuxNets in our
experiments. The TC, mIoU, and GMAC numbers reported
here are based on using the AuxNet model alone, without
MainNet and adaptation.

6.5. Output Uncertainty and Temporal Inconsis-
tency

Output uncertainty is a major cause of temporal incon-
sistency in video semantic segmentation. In this part, we
visualize the uncertainty map of the segmentation output and
analyze its connection to temporally inconsistent segmenta-
tion.

For each pixel (i, j), we refer to the maximum value of
the K-dimensional output of the softmax operation before
applying argmax as the prediction confidence at this pixel,
c(i, j), whereK is the number of classes. For each pixel, we



Networks TC mIoU GMAC/F
Cityscapes

HRNet-w18-s8 71.9 72.6 19
HRNet-w16-s8 71.4 74.3 17

CamVid
HRNet-w18-s8 76.8 69.4 6.3
HRNet-w16-s8 76.5 70.8 5.6

KITTI
HRNet-w18-s8 54.1 57.5 4.3

Table 11: Standalone performance of the lightweight AuxNet
models on Cityscapes, CamVid, and KITTI.

         Input Image

         Frame 
         t

         Frame 
         t+1

         Frame 
         t+2

         Frame 
         t+3

         Frame 
         t+4

Segmentation  
HRNet-w48 

Segmentation
AuxAdapt

Uncertainty
HRNet-w48 
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Figure 5: Connection between uncertainty and temporally incon-
sistency. Column 1 shows the input RGB frames. Columns 2 and 4
show the uncertainty maps and the segmentation decisions by using
an HRNet-w48 model without adaptation. Columns 3 and 5 show
the uncertainty maps and the segmentation decisions by using our
proposed AuxAdapt. Red arrows indicate sample uncertain areas
which lead to temporally inconsistent segmentations. It can be
seen that AuxAdapt significantly reduces the output uncertainty
and improves temporal consistency of the segmentation.

calculate the uncertainty as follows: u(i, j) = 1 − c(i, j).
We can then use u as the uncertainty map of the network’s
segmentation decision, where for each pixel, a higher (lower)
value indicates a higher (lower) uncertainty.

In Fig. 5, 6, and 7, it can be seen that for the original
model (MainNet), the uncertain regions (column 2) result in
temporally inconsistent segmentation decisions (column 4).
The red arrows indicate sample locations where uncertainties
cause temporally inconsistent artifacts. On the other hand,
AuxAdapt provides much more confident predictions (col-
umn 3), leading to significantly more temporally consistent
results (column 5).

         Input Image

         Frame 
         t

         Frame 
         t+1
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         t+2
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         t+3

         Frame 
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Segmentation  
HRNet-w48 

Segmentation
AuxAdapt

Uncertainty
HRNet-w48 

Uncertainty
AuxAdapt

Figure 6: Connection between uncertainty and temporally incon-
sistency. Column 1 shows the input RGB frames. Columns 2 and 4
show the uncertainty maps and the segmentation decisions by using
an HRNet-w48 model without adaptation. Columns 3 and 5 show
the uncertainty maps and the segmentation decisions by using our
proposed AuxAdapt. Red arrows indicate sample uncertain areas
which lead to temporally inconsistent segmentations. It can be
seen that AuxAdapt significantly reduces the output uncertainty
and improves temporal consistency of the segmentation.

6.6. Comparing with State of the Art

We show visual results to compare AuxAdapt with the
state-of-the-art segmentation model, ETC [27], which uti-
lizes optical flow during training, and the state-of-the-art
test-time adaptation method for improving temporal consis-
tency, DVP [25]. In Fig. 8, 9, and 10, it can be seen that
AuxAdapt generates temporally more consistent and more
accurate video semantic segmentation results. Furthermore,
as compared to DVP which requires 25 epochs of training
for test-time adaptation, our proposed AuxAdapt requires
only one pass of the video.



         Input Image
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Figure 7: Connection between uncertainty and temporally incon-
sistency. Column 1 shows the input RGB frames. Columns 2 and 4
show the uncertainty maps and the segmentation decisions by using
an HRNet-w48 model without adaptation. Columns 3 and 5 show
the uncertainty maps and the segmentation decisions by using our
proposed AuxAdapt. Red arrows indicate sample uncertain areas
which lead to temporally inconsistent segmentations. It can be
seen that AuxAdapt significantly reduces the output uncertainty
and improves temporal consistency of the segmentation.

ETC [25] (PSPNet18) ETC [25] (PSPNet18)
w/ AuxAdapt (ours)
(1 pass (epoch))

ETC [25] (PSPNet18)
w/ DVP [23] 
(25 epochs)

Frame t

Frame t+1

Frame t+2

Frame t+3

Figure 8: Visual results comparing our proposed AuxAdapt with
state-of-the-art methods. Left: ETC [27]. Middle: DVP [25].
Right: AuxAdapt (ours). White dashed boxes highlight temporally
inconsistent and inaccurate segmentation. It can be seen that Aux-
Adapt significantly improves segmentation temporal consistency.
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Figure 9: Visual results comparing our proposed AuxAdapt with
state-of-the-art methods. Left: ETC [27]. Middle: DVP [25].
Right: AuxAdapt (ours). White dashed boxes highlight temporally
inconsistent and inaccurate segmentation. It can be seen that Aux-
Adapt significantly improves segmentation temporal consistency.
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Figure 10: Visual results comparing our proposed AuxAdapt with
state-of-the-art methods. Left: ETC [27]. Middle: DVP [25].
Right: AuxAdapt (ours). White dashed boxes highlight temporally
inconsistent and inaccurate segmentation. It can be seen that Aux-
Adapt significantly improves segmentation temporal consistency.


